How Smart Dust Could Be Used To Monitor Human Thought

Elise Ackerman, Contributor

A few years ago a team of researchers from Brown University made headlines after they successfully demonstrated how a paralyzed woman who had lost the use of her arms and legs could control a robotic arm using her brainwaves. In a video, Cathy Hutchinson imagines drinking a cup of coffee, and the robotic arm brings the cup to her lips.

The scene is amazing, but also a little disturbing. Hutchinson is connected to the robotic arm through a rod-like “pedestal” driven into her skull. At one end of the pedestal, a bundle of gold wires is attached to a tiny array of microelectrodes that is implanted in the primary motor cortex of Hutchison’s brain. This sensor, which is about the size of a baby aspirin, records her neural activity. At the other end of the pedestal is an external cable that transmits neural data to a nearby computer, which translates the signals into code that guides the robotic arm.

This method, known as BrainGate, pretty much defined state-of-the-art brain-computer interfaces at the end of the last decade. If the idea of a rod-through-the-head computer interface makes you cringe, you are not alone.

For some time, a small team of researchers at UC Berkeley has been working on plans for a less invasive, wireless monitoring system. Earlier this month, they released a draft paper: “Neural Dust: An Ultrasonic, Low Power Solution for Chronic Brain-Machine Interfaces.”

Read More  Here

Enhanced by Zemanta